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Abstract. We study two lattice models: (@) c-animals with an interaction energy o between
nearest-neighbour pairs of vertices; (b) c-animals as in (a) but with and additional
interaction energy w between the vertices of the animal and an adsorption surface. By
assuming that the partition functions satisfy A, (¢, a)~n~% A (a)" and A,(c, a, @)~
@)y (o w)" as n > with ¢ fixed, we show that 8.(a)=f,(a)~c, —00< a <o and
e, w)=8y(a, w)—¢, ~O<a, w<wo, where By(a} and 0y(a, w) are the corresponding
exponents for trees.

1. Introduction

A (weakly embedded) c-animal is a connected subgraph on a regular d-dimensional
lattice with a cyclomatic index c. The cyclomatic index is the number of independent
cycles, or the maximum number of edges which can be removed withoui disconnecting
the animal. When ¢ =0, the animal is called a tree. The number of c-animals with n
vertices a,{(c), is expected to have the asymptotic behaviour

ap(c)~n"%A; (1)

where A, is the connective constant of the lattice. It has been shown (Whittington et
al 1983) that A, is independent of the cyclomatic index ¢, For the exponent 8, for the
subdominant term, Soteros and Whittington (1988) have established

B.=8y—c (2}

if either of the exponents exist.

In a previous paper, we have considered the interaction of a ¢-animai with an
adsorption surface through an interaction energy e«. By assuming the existence of
#,{w), we have shown that #.(w) also exists and satisfies

fc(w) = Bg(w)—c (3)

for —0< w <+ (Zhac and Lookman 1991}.

These results have been obtained by considering c-animals in a good solvent without
an interaction between nearest-neighbour pairs of vertices. Recently, branched poly-
mers in which the monomers are allowed to interact with each other and which undergo
a collapse transition, have received some attention {Whittington er al 1991, Madras et
al 1991 and references there). Such a problem is modelled by considering lattice
animals in which there is an attractive interaction energy o between a pair of vertices
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which are a unit distance apart but are not incident on a common edge (hereafter, we
refer to such a pair as a nearest-neighbour contact or simply a contact).

In this paper, we consider both c-animals with a nearest-neighbour interaction and
c-animals with both a nearest-neighbour interaction and an interaction with an adsorp-
tion surface. The partition functions for the two models are defined as

Anle, @) =T an () € (4)

P Y IS B Ty

(Whittington et al 1991) and
An(c: @, (D) _"2 an.i.j(c) eia+jm (5)

i
(Veal et al 1990) where a,,;(c) is the number of n-vertex c-animals with i contacts and
@,;; is the number of n-vertex c-animals with i contacts and j vertices in the surface.
From the arguments of Whittington et al (1991), Madras er al (1991) and Lookman

ann

ei ai 13?0, one can show ihai the {imiis

1
lim —1n A, (¢, a)=In Ay{a) (6)
n-=c0 N
1
lim —In A, {c, @, w)=In Aye, @) ()
n—o0 R}
exist for all « and w, and are independent of the cyclomatic index ¢ with ln Agla, @)
satisfying
max{ln Ag(a), In A¥ (@) + @} =1n Aa, @)= max{ln Ay(a), In Ay(a)+ e} (8)

where In AF(a) is the limit (6) of the corresponding (d —1)-dimensional lattice. By
analogy, one can expect both A,(c, @) and A, (¢, e, ) to have asymptotic behaviour
similar to that in (1) with

Bla)=8(a)—¢ for —O< o <o (9)
and

e, w)=0(a,w)—¢ for —o< a @ < 00, (10)

We prove these two equalities by assuming that 8g{a) and 8o, w) exist. We extend
the local transformation given by Soteros and Whittington (1988} (referred to as sw)
Fre lhonmah walomtés fernwtdnan Anncrn arantar thnoew rrmakiman vrratle lanod e

10T Ulalivil prosiis \V’GI.I.IUUD w'uu UCBICC slvalel uan A}' I-U V’Cll—l\aCD Wil dl- 1€as O
contact and vertices in the surface. This results in the inequalities

Anaclc, @)= fla)n’T,(a) (11)
and
Ansrclc, a, 0) = f(a, 0In*T (o, w) (12)
where T, (a) and T, (a, )} are the corresponding partition functions for trees. We note
that deletmg c edges from a c-animal w1thout dlsconnectmg it yields ¢ extra nearest-
neighbour contacts but does not change the number of vertices on the adsorption
surface. Therefore, from an argument given by Whittington et al (1983), one can derive
A,(c, a}<(2dn)° e’ T,(a) (13)
and
Ale o, w)<(2dn)¢ e T (a, w). (14)
Together, these inequalities give (9) and (10).
For convenience, we will concentrate on ¢-animals embedded in the square lattice
where the ‘surface’ is the line x = 0. However, the generalization of the corresponding
results to higher-dimensional lattices is straightforward.
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2. c-animals with nearest-neighbour interaction

This section is concerned with weak embeddings in the square lattice with only
nearest-neighbour interaction.

2.1

In the square lattice, an n-vertex tree T consists of n connected vertices with coordinates
{x;, ), i=1,..., n. The top vertex v, (bottom vertex v} of the iree is defined as the
vertex with maximum (minimum) x coordinate and in turn the vertex in this subset
having maximum (minimum) y coordinate. A contact consists of a pair of vertices v’,
v” which are nearest neighbours but not connected to each other by an edge. Hereafter,
for such a pair, we say that v’ has a contact with v” if x'+)»'<x"+y" and vice versa.
Thus, a veriex vg={x, y} can oniy have contacts with the veriices v,={x+1, yj and
v, =(x, y+1). We classify such a vertex v, of a tree by:

{(a) vy is in the set ¥, if it has a contact with v, and is connected to v,.
(b) v, is in the set ¥, if it has a contact with v, and is connected to v,.
{c) by isin the set ¥} if it has a contact with v,, but v, is not in the tree.
(d) vy is in the set 7, if it has a contact with v,, but v, is not in the tree.
(e} v, is in the set ¥ if it has contacts with both v, and v,.

Theorem 1. Every tree T with a vertex v, ¥, V5, ¥5, ¥, or ¥ can be converted
into an (n+2)-vertex 1-animal containing a 4-cycle in which u, is the bottom vertex
of the 4-cycle. The resulting animal can have at most 14 x 3 such trees as its precursors.

Proof. We consider a tree T which has a vertex vo=(x, y) € ¥,. Then, v, has a contact
with v, and is connected to v,. The tree must contain at least one of the vertices
v;=(x+1,y+1), v5={x+2, y)and ¢,;=(x+1, y — 1) and one of the edges {v,, v,,],
[v,, ;] and [v,, v13]. v, is connected to v, through one and only one of these three
edges. Delete such an edge on this connected path and add the edge [v,, v,] and
the vertex v)={x,+1,y,) and the edge [v, v;] if {v,, v;>] is deleted. Otherwise,
add the vertex v =(x, ¥+ 1) and the edge [v,, v/] if either [v,, v;;] or [y, v5] is
deleted. The resulting connected subgraph has n+1 vertices and n edges. It is a tree
T' with v, connected to both v, and v,. Since the constructions for trees with o,
connected to v, through either [©,, v,,] or [, v,;] are the same, there can be at most
two trees containing a vertex in 77 that is mapped to the same T'.

Similarly, with a little modification of the above procedure, a tree with a vertex o,
in one of the other four seis can be converied it into a (n+ 1)-veriex iree T  such that
v, is connected to both », and v,. One can show that the resulting tree, T' can have,
as its precursors, at most 2 trees with poe ¥, 3 trees with vy %3, 3 trees with vy ¥,
and 4 trees with vye ¥;. Therefore, together there can be at most 14 such trees that
are mapped to the same T".

Then the transformation given in sw in theorem 1 is applied to T' at v,. This results
in converting T' into an »n+ 2-vertex 1-animal which has a 4-cycle at v,, consisting of
the vertices vy, v, t2 and e;=(x+1,y+1) and the edges [y, v,] [v,, 03], [vs, v,]
and [v,, v,]. From the same theorem, the resulting animal can have at most such trees,
T’, as precursors. Hence, the resulting animal can have at most 14X 3 trees, T, as its
precursors.
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Consider a tree T containing more than en (£>>0) contacts. Since a vertex can
have at most two contacts, T must have atleast en/2 vertices in ¥, u. . .U ¥5. Therefore,
there can be at least

(Enllz) (15)

ways to choose ;. We note that, in the above procedure, there is a neighbourhood,
N(1,), of vy defined by

N{wp): |x = x| =1 [y —yol=1 (16)

such that if T has another vertex v, whichisin ¥, u. ..U ¥ but not in A (), repeating
the same transformation at v will leave the 4-cycle at v, unchanged. T can have at
most 9 vertices contained in A (v} and these vertices can have at most 18 contacts.
Hence, if en> (¢ —1) % 18, there are at least

(sn1/2)((sn —118)/2) N ((en —(c ; 1)18)/2)/C! (17)

ways to select the ¢ vertices at which we can carry out the transformation successfully
to convert T into a c-animal.

2.2,

Let J, be the set of n-vertex trees. We define 7'(¢, >) to be the set of n-vertex trees
containing more than en branch points, 7 (e, >) to be the set of n-vertex trees
containing more than en contacts and

Tole,>)=TV(e,>)0 TP(e, >). (18)

For a tree Te T '"(g >), we convert it into a c-animal with n+¢ vertices by
following the argument in sw. We note that the resulting animal can have at most 2¢
extra contacts, Denoting by 7.} the number of trees in 7 {(&, >) containing i contacts,
we have

n
)+ i)+ anannee)= (2% (19)
with &' = £/5. Multiplying both sides by ¢'* and summing over i gives
lal dclaly 4 1. N 2 ) P JET
crre T +e JAp G @)= In \E ~, ) L)
\c)
or simply
Anselc, @) fila)(e'n) (1+0() T, (e, >, ). (21)

Atree Te T%P(e, >), has more than en contacts. By following the above procedure,
we convert it into a c-animal which can have at most 4¢ extra contacts. Let £\2] be the
number of trees in ‘*(g, >) containing i contacts, from the above argument, we have

- —(i—-1)x18
et A= [ (7O e @

i=1



c-animals with nearest-neighbour interaction 2185

where C = (14x3)“c! Multiplying both sides with ¢'* and summing over i gives

c(1+e™+. . +e**NA, (¢ a)

> 1] (E"_(iII)XIS)TE,Z)(e, >,a)/C (23)
or
Anizc(e @)z fila)en) (1+0(1) TP (e, >, ). (24)
From equations (21} and (24), we have
Apacle,>) = flale'n) T (e, >, a) (25)

where we used the fact that A,,.,.(¢, a)= A, (c, ) and T,(e, >, @) is the partition
function for trees in the set 7, (g, =>).

2.3

We classify contacts and describe a transformation to convert a walk into a tree which
satisfies certain requirements. We define a contact to be a type-I contact if two vertices
forming the contact belong to the same branch and at least one of them has degree 2.
Otherwise, we define the contact to be a type-II contact. We denote by 7/ {g, ) the
set of n-vertex trees containing at most en branch points and at most en type-1I contacts
and ¥,(g, <) the set of n-step self-avoiding walks with at most en contacts.

Lemma 1. Every walk We % (¢, <) can be converted into a tree T'¢ 7. ,(¢, <) such
that if W has k contacts, T' has k 1l-type contacts and at most k branch points. T
can have at most 9* walks as its precursors.

Proof. Let W ={x(0), x(1),..., x(n)} be an n-step self-avoiding walk. If W has no
contact or has only one contact consisting of x(0) and x(n), which is a type-II contact
from the definition, the walk is a member of 7 ,(s, =). We therefore consider a walk
W with k (=1) contacts with at least one type-I contact. Starting at x(0), we move
along the walk and stop at x{j,) which is the first vertex in contact with one of the
vertices x(0), ..., x(j,—1), named x(i,). If j, = n, W has only one type-I contact. We
add the edge [x(i,), x(j,}] and delete the edge [x(j,—1}, x(j,)], which converts the
walk into a tree with a branch point of degree 3 at the vertex x(i,) and one type-II
contact. If j, < n, we add the edge [x(i,}, x(j,)] and delete the edge [x(i, + 1), x(i, +2)],
which gives a tree with one branch point of degree 3 at the vertex x(j,) and k contacts
of which at least one is a type-II contact. Obviously, the resulting tree can only have
type-1 contacts on the branch {x(j,), x(j,+1),...,x(n)}. Next, we examine the walk
{x(j1), x(j1 +1),..., x{(n)} and repeat the same procedure along it. Since W can have
at most k type-1 contacts, by repeating the procedure at most k times, we convert W
into an (n+1)-vertex tree with k branch points of degree 3 and exactly k type-II
contacts {figure 1).

Let T be a tree constructed following the above procedure with only one branch
point v of degree 3. There then exists at least one vertex v’ such that it is connected
to ¢ by the edge [r, '] and in contact with the end vertex »” of one branch. We add
the edge [v’, v”] and delete the edge [v, ©'], which gives an n-step self-avoiding walk
which can be converted into T’ by the above procedure. Since v has degree 3, it is
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x{n) ‘

x(i) ¥ x(h) P

—

@ x(0)

(2) (b)

Figure 1. (a) An 11-step self-avoiding walk with five type-I nearest-neighbour contacts;
(b} a 12-vertex tree constructed from the walk (a) with two (< 5) branch points and exactly
five type-1I nearest-neighbour contacts.

connected to 3 nearest-neighbour vertices. Each of these 3 vertices can be in contact
with the end vertex of at most 3 branches. Therefore, there are at most (3 X 3} ways
of combining together to choose ¢” and v” and each of them will give a different n-step
self-avoiding walk. Hence, there can exist at most 9 walks as precursors for T'. If T
has k branch points, from the above argument, there can exist at most 9% walks as the
precursors for T'.

2.4

We define 7,(g, =)= T N\T.(e,>), which is the set of n-vertex trees containing at
most en branch points and at most en contacts. We denote by 1, (g, <) the number
of trees in F,(eg, =) with exactly i contacts. By an argument analogous to that of
Lipson and Whittington (1983), one can show that the limit

1 1 o .
lim — T, (e, <, a)=lim 3 Y tole, ) e =1nAgle, a) (26)

n-»00 B i=1

exists for all o.

When £ =0, a member in 7,(0, =) reduces to an (n —1)-step self-avoiding walk
without any nearest-neighbour contact. By a standard procedure (Whittington 1988),
one can show the existence of the limit

1
In Ag(0, @) = lim ;ln T,(0,<,a)=x" (27)
n=00
From lemma 1 and arguments in sw, we obtain theorem 2.

Theorem 2. For given a, the function of in Aq(e, @) is continuous at &= 0. That is

lim In Ag(e, @) =1n Ag(0, ) = «'. (28)
e+
By using a result given by Whittington et af (1991) and an argument anologous to
that of Gaunt et al (1982), one can show that, for any a,
In Ag(ex) > «'. (29)

From (28) and (29), we have.
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Lemma 2. For given a, there exists g4(a)> 0 such that for any g < go{a),

. Tn(sa >sa)_
rl.l—{ls}o_—th(a) =1. . (30)

With the lemma 2 and equations (13) and (25), we obtain

Theorem 3. If lim, .. [In T,(a)~nln Ag(a)]/In n=~6,{(a) exists, then

inA,(c,a)—ninaAgla)
m -

li =—6.{a) (31)
n-o inn

exists for all ¢ and
f(a)=0(a)~c (32)

3. The presence of an adsorption surface

In this section, we consider ¢-animals rooted at an adsorption surface with both the
nearest-neighbour interaction and the interaction with the surface. The surface can be
either penetrable or impenetrable. In the following, we do not distinguish the surfaces.
However, the appropriate results apply, depending on the surface.

Let 7, be the set of n-vertex trees rooted at the surface. For £> 0, the subsets
T V(g,>) and TP (&, >) are the same as defined in section 2. By following the same
procedure there and an argument of Zhao and Lookman (1991), we can convert the
trees in these subsets into c-animals and establish

An+c(c= @, (0) Bfl(a, m)(E,H)CT(nl)(E: >’ a, w) (33)
and
Anracle o, 0) = file, w)(en) T e, >, o, 0) (34)

with £'=g/5.
We define the third subset 7'%(e, >) of ,, which is the set of all n-vertex trees

Y wea rhanga
-

writh manra than c(rg — 1} vartirac in tha cnrf‘ace. Fnr o tras TE 3?"«;13)(&. , we choose

YALLL MAEVIA LAILGEL LT VLA RIWAD LA Lklw SuUil UL 4 N

one vertex of the tree, vy=(0, y) which is in the surface, and consider all possible
configurations of the vertex with the vertices v, = (1, ¥) and v, = (0, y+1) (there are a
total of 9 such configurations). By following a procedure similar to that given in
theorem 1, we convert the tree into an (n+3)-vertex l-animal with a 4-cycle in which
¥, is the bottom vertex of the cycle. It can be shown that the resulting animal can have
a finite number of trees as its precursors, and the 4-cycle is not involved in carrying
out the same transformation at any other vertex which is not in the neighbourhood,
N{ug), of v, given by (16). T can have at most 3 vertices contained in ¥{p,) which
are in the surface. Therefore, provided that £(n—1)> (¢ —1) X3, there can be at least

(E(nl— 1))(€(n _11) _3) - '(E(n i 1)_1(6_ Y X3)/°! 03

ways to select the ¢ vertices at which we can carry out the same transformation to
convert T into a c-animal with (n+ 3¢} vertices. Similarly, we can establish that

An+3r:(cs a, &J)?f;(ﬂf, w)(En)cﬂnj)(es >, a, ﬂ)). (36)
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Combining it with (33) and (34) yields

An+3£(c$ o, w)?f'(a, w)(s'n)CT,,(s, >’ a, w) (37)
where T, (e, >, o, w) is the partition function for the trees in the set
Tu(e,>)=U T (e, >) U TP, >) U TPe, >). (38)

Then by following the same procedure in section 2, we can show that, for a
sufficiently small £ and sufficiently large n,

T.e,>, a,w)=T,(a w)1+o0()) (39)
and therefore
Aniale a,0) 2 f(c, o, 0)n°To (e, w). (40)
Combining equations (14) and (40), we obtain theorem 4.

Theorem 4. If lim,.o[ln T,{(a, @) —nIn Agla, w)]/In n = —64{ e, w) exists, then

. [ln A"(C, &, w)—n ]ﬂ Ao(a, w)]
m =

ll-mo — —0.(a, ) {41)
exists and satisfies
ec(as (r)) = 60(“1 w) —-¢ (42)

4. Discussion

We have studied two lattice models on the square lattice: c-animals with a nearest-
neighbour interaction and c-animals with a nearest-neighbour interaction and an
interaction with an adsorption surface. The result of equation (1) given in sw has been
generalized to these two models by establishing the inequalities (11) and {12), which
are generalizations of the corresponding inequality

an+c(c)2Anctn (43)

{equation (1.9) in sw). This inequality was previously obtained by showing that cycles
can be introduced into a tree at a branch point to give distinct animals with cycles;
then for some £ > 0, the number of trees with more than en branch points is equivalent
to the number of trees as n — o0 (see lemmas 4-6 in sw), For the two models we have
considered, it appears difficult to follow this procedure directly to obtain (11) and
(12), since we are unable to show that the partition functions for trees with more than
en branch points are equivalent to the corresponding partition functions for trees.
These difficulties have been overcome by showing that cyles can also be introduced
into trees at a vertex with nearest-neighbour contacts and at a vertex in an adsorption
surface.

The proof given for the square lattice can be generalized to the d-dimensional
hypercubic lattice. For instance, we consider c-animals with only nearest-neighbour
interaction in a d-dimensional hypercubic lattice. A vertex v,=(x, §,..., z} can then
have contacts with the vertices v, =(x+1,¥,...,2), m,=(x,y+1,...,2),..., tg=
(x,9...,z+1). We first convert v, into a vertex which is connected to two of its
nearest-neighbour vertices and then into a 4-cycle. The resulting anjmal can have a
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finite number of such trees as its precursors. The 4-cycle is totally independent of the
same transformation carried out at any other vertex which is not in the neighbourhood,
N(vy) defined by

N (0): |x = xo =1 ly=rd=<1,... lz-z=1. (44)

By following the procedure in section 2, we can establish (9) for c-animals in a
d-dimensional hypercubic lattice.
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