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Abstract. We study two lattice models: ( a )  e-animals with an interaction energy EL between 
nearest-neighbour pairs of vertices; ( b )  c-animals as in ( a )  but with and additional 
interaction energy o between the vertices of the animal and an adsorption surface. By 
assuming that the partition funclions satisfy A,(c, e ) -n- '@'&(e)"  and A,,(e, (I, 0 ) -  

n-'~(".")A,(o,o)" as"+-  with cfired,  weshowthat B , ( o ) = B , ( e ) - c ,  -m<o<mand 
B , ( e , ~ ) = B ~ ( a , w ) - c ,  -mccc, w < m ,  where a,(-) and @,,(cc,w) are the corresponding 
exponents far trees. 

1. Introduction 

A (weakly embedded) c-animal is a connected subgraph on a regular d-dimensional 
lattice with a cyclomatic index c. The cyclomatic index is the number of independent 
cycies, or the maximum number of edges which can be removed wiihoui disconneciing 
the animal. When c = 0, the animal is called a tree. The number of c-animals with n 
vertices a.(c), is expected to have the asymptotic behaviour 

where A, is the connective constant of the lattice. I t  has been shown (Whittington et 
al1983) that A <  is independent of the cyclomatic index c. For the exponent 0, for the 
subdominant term, Soteros and Whittington (1988) have established 

0 , = 8 , - c  (2) 

if either of the exponents exist. 
In a previous paper, we have considered the interaction of a c-animal with an 

adsorption surface through an interaction energy w. By assuming the existence of 
0,(w),  we have shown that & ( w )  also exists and satisfies 

for -m< o < +CO (Zhao and Lookman 1991). 
These results have been obtained by considering c-animals in a good solvent without 

an interaction between nearest-neighbour pairs of vertices. Recently, branched poly- 
mers in which the monomers are allowed to interact with each other and which undergo 
a collapse transition, have received some attention (Whittington er a1 1991, Madras et 
al 1991 and references there). Such a problem is modelled by considering lattice 
animals in which there is an attractive interaction energy n between a pair of vertices 
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which are a unit distance apart but are not incident on a common edge (hereafter, we 
refer to such a pair as a nearest-neighbour contact or simply a contact). 

In this paper, we consider both e-animals with a nearest-neighbour interaction and 
c-animals with both a nearest-neighbour interaction and an interaction with an adsorp- 
tion surface. The partition functions for the two models are defined as 

D Zhno and T Lookman 

A , ( ~ , a ) = X a , ~ ( c ) e ' "  (4) 

(Veal et a1 1990) where a.,,(c) is the number of n-vertex c-animals with i contacts and 
a,,,,, is the number of n-vertex c-animals with 1 contacts and j vertices in the surface. 
From the arguments of Whittington et a1 (1991), Madras et a1 (1991) and Lookman 
ei ui i990, one can show ihar the iimirs 

1 
lim -In A.(c, a) =In &((I) 
n-m n 

1 
l im-InA.(c ,a ,w)=Inho(a ,o)  
n-m n 

e x i s  fo: a!! a and w, and aii ifidepinden: of :he cjc!oma:ic iiidex i with !a Ao( a, a) 

max{ln &(a), In A , * ( a ) + w } < l n  &(a, w)Smax{lnA,(a),ln Ao(a)+o} (8) 
satisfying 

where InA$(a) is the limit (6) of the corresponding (d-1)-dimensional lattice. By 
analogy, one can expect both A.(c, a) and A.(c, a, o) to have asymptotic behaviour 
similar to that in (1) with 

and 

We prove these two equalities by assuming that &,(a) and Oo(a,w)  exist. We extend 
the local transformation given by Soteros and Whittington (1988) (referred to as sw) 

contact and vertices in the surface. This results in the inequalities 

and 

e,(a)= oo(a)-c for -m< a <CO (9) 

e , ( a , o ) = e , ( a , w ) - ~  f o r - m < a  o<m. (10) 

F-- L h /..--Le-- __.:rL A---*- +h-- 1\ f- ... :.L ..& I--- .  --- ,U, U L ~ L I G I I  yuiirr~ {VGLLLCTD WLLU ucg i~c  grcarsi L ~ W  L, LY VCIII~=D WML a i=a>t ULLG 

A n + d c ,  a ) > f ( a ) n ' T , ( a )  (11) 

Ao+dc,  a, w ) > f ' ( a ,  w)nfTn(a, w )  (12) 
where Tii(u) and T,(a, U )  are the corresponding partition functions for trees: We note 
that deleting c edges from a c-animal without disconnecting it yields c extra nearest- 
neighbour contacts but does not change the number of vertices on the adsorption 
surface. Therefore, from an argument given by Whittington et al (1983), one can derive 

A,( c, a) s (2dn)' e"" T, ( a) (13) 
and 

A, (c ,n ,w)~(2dn) 'e ' l "~  T , ( a , w ) .  (14) 
Together, these inequalities give (9) and (10). 

For convenience, we will concentrate on c-animals embedded in the square lattice 
where the 'surface' is the line x = 0. However, the generalization of the corresponding 
results to higher-dimensional lattices is straightforward. 
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2. e-animals with nearest-neighbour interaction 

This section is concerned with weak embeddings in the square lattice with only 
nearest-neighbour interaction. 

2.1. 

In the square lattice, an n-vertex tree T consists of n connected vertices with coordinates 
(xi, y j ) ,  i = 1,. . . , n. The top vertex U, (bottom vertex ub) of the tree is defined as the 
vertex with maximum (minimum) x coordinate and in turn the vertex in this subset 
having maximum (minimum) y coordinate. A contact consists of a pair of vertices U', 
U" which are nearest neighbours but not connected to each other by an edge. Hereafter, 
for such a pair, we say that U' has a contact with U" if x'+y'< x"+y" and vice versa. 
inus, a vertex uo= (x, y )  can oniy have contacts with the veriices U, = ( x t  i, y )  and 
u2 = (x, y + 1). We classify such a vertex U, of a tree by: 

- 
(a) U,, is in the set V, if it has a contact with U, and is connected to U,. 
(b) U, is in the set V2 if it has a contact with u2 and is connected to U,. 
( c )  uo is in the set V3 if it has a contact with U,, but U, is not in the tree. 
(d) U, is in the set V4 if it has a contact with u2, but U, is not in the tree. 
(e)  U,, is in the set V, if it has contacts with both u1 and U,. 

Theorem 1. Every tree T with a vertex U,E Y , ,  V2, 7,. V4 or V, can be converted 
into an (n+2)-vertex 1-animal containing a 4-cycle in which U,, is the bottom vertex 
of the 4-cycle. The resulting animal can have at most 14 x 3  such trees as its precursors. 

Proof: We consider a tree T which has a vertex uo = (x, y) E V,. Then, U,, has a contact 
with u1 and is connected to u2. The tree must contain at least one of the vertices 
U,, = ( x +  1, y+l) ,  u12 = (x+2, y) and uB3 = ( x f l ,  y -  1) and one ofthe edges [U,, U,,], 
[ u I ,  U,,] and [U,, U,,]. U, is connected to U, through one and only one of these three 
edges. Delete such an edge on this connected path and add the edge [U,,, U,] and 
the vertex u:=(xt+l,yr) and the edge [ut, U:] if [U,, u , ~ ]  is deleted. Otherwise, 
add the vertex u:'=(x,,y,+l) and the edge [U,, U:] if either [U,, U,,] or [U,, U,,] is 
deleted. The resulting connected subgraph has n + 1 vertices and n edges. It is a tree 
T' with U,, connected to both U, and u2. Since the constructions for trees with uo 
connected to U, through either [uI, u l l l  or [ u l ,  u,J are the same, there can be at most 
two trees containing a vertex in VI that is mapped to the same T'. 

Similarly, with a little modification of the above procedure, a tree with a vertex uo 
in one o i  the other four sets can be converted ii inio a ( n t  ij-vertex iree T' such thai 
uo is connected to both U, and u2. One can show that the resulting tree, T' can have, 
as its precursors, at most 2 trees with U,,€ V2, 3 trees with U ~ E  V3, 3 trees with u0€ V4 
and 4 trees with u 0 €  V,. Therefore, together there can be at most 14 such trees that 
are mapped to the same T'. 

Then the transformation given in sw in theorem 1 is applied to T a t  U,,. This results 
in converting T' into an n +Z-vertex 1-animal which has a 4-cycle at U,, consisting of 
the vertices U", u l ,  u2 and u 3 = ( x + l , y + l )  and the edges [ W O ,  UJ [UI. %I, [U,, U,] 
and [U,, U,,]. From the same theorem, the resulting animal can have at most such trees, 
T, as precursors. Hence, the resulting animal can have at most 14x3 trees, T, as its 
precursors. 



2184 D Zhao and T Lookman 

Consider a tree T containing more than En ( E  > 0) contacts. Since a vertex can 
have at most two contacts, T must have at least ~ n / 2  vertices in 'V, U,. ,U "cc,. Therefore, 
there can be at least 

("1") 
ways to choose U,,. We note that, in the above procedure, there is a neighbourhood, 
N(uO), of uo defined by 

N u , ) :  Ix - xol 1 l Y - Y o l ~ 1  (16) 

such that if T has another vertex U; which is in "v, u. .  .U V5 but not in N (  U,,), repeating 
the same transformation at U; will leave the 4-cycle at uo unchanged. T can have at 
most 9 vertices contained in N(uo) and these vertices can have at most 18 contacts. 
Hence, if En > (c - 1) x 18, there are at least 

ways to select the c vertices at which we can carry out the transformation successfully 
to convert T into a c-animal. 

L.1. 

Let FH be the set of n-vertex trees. We define F%E, >) to be the set of n-vertex trees 
containing more than ~n branch points, Y;"(E, >) to be the set of n-vertex trees 
containing more than ~n contacts and 

F"(E,>)= F;)(E,>)uF!2y€,>). (18) 

For a tree T E  Y ~ ) ( E ,  >), we convert it into a c-animal with n + c vertices by 
following the argument in sw. We note that the resulting animal can have at most 2c 
extra contacts. Denoting by t$ the number of trees in F?)(s, >) containing i contacts, 
we have 

a .+ , j ( c )+a , i+ , ( c )+ .  . .+an.i+2c(c)a ( E : ) t ! : ! / 2 x 3 c  (19) 

with E ' =  E / S .  Multiplying both sides by e" and summing over i gives 

c( i+e!"!+,  , , t e 2 ' ! " ! '  ) f i n + ~ ( ~ .  1 I .  a i -  ~ ,- ( E ; )  T ; y C ,  >, u j  $3; 

or simply 

A.+,(c, a ) ~ . f , ( a ) ( E ' n ) c ( 1 + ~ ( 1 ) ) 7 ? ) ( e ,  >, a). (21) 

A tree T E Ti2)( E, >), has more than En contacts. By following the above procedure, 
we convert it into a c-animal which can have at most 4c extra contacts. Let t!,!! be the 
number of trees in T',"(E, >) containing i contacts, from the above argument, we have 
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where C = (14x3)'c! Multiplying both sides with ei* and summing over i gives 

c(l+el"+. . .+e4'1"1)A.+z,(c, a) 

2.3. 

We classify contacts and describe a transformation to convert a walk into a tree which 
satisfies certain requirements. We define a contact to be a type-I contact if two vertices 
forming the contact belong to the same branch and at least one of them has degree 2. 
Otherwise, we define the contact to be a type-I1 contact. We denote by Fk(e, s )  the 
set of n-vertex trees containing at most En branch points and at most ~n type-I1 contacts 
and W.(E, s) the set of n-step self-avoiding walks with at most E n  contacts. 

Lemma 1. Every walk W E  W"(E, 6) can be converted into a tree T ' E  F:+,(E, s) such 
that if W has k contacts, T' has k 11-type contacts and at most k branch points. T 
can have at most 9* walks as its precursors. 

Boo$ Let W = {x(O), x ( l ) ,  . . . , x ( n ) }  be an n-step self-avoiding walk. If W has no 
contact or has only one contact consisting of x(0) and x ( n ) ,  which is a type-I1 contact 
from the definition, the walk is a member of Fb+l(~, S j .  We therefore consider a walk 
W with k ( 3 1 )  contacts with at least one type-I contact. Starting at x(O), we move 
aiong the wai i  and stop at x ( j , j  which is the first vertex in contact with one of the 
vertices x(O), . . . , x ( j ,  - l) ,  named x ( i , ) .  If j ,  = n, W has only one type-I contact. We 
add the edge [ x ( i l ) ,  x ( j l ) ]  and delete the edge [ x ( j l - l j ,  x ( j J ] ,  which converts the 
walk into a tree with a branch point of degree 3 at the vertex x ( i J  and one type41 
contact.Ifj,<n, weaddtheedge[x(i,),x(j,)]anddeletetheedge[x(i,+l),x(i,+2)], 
which gives a tree with one branch point of degree 3 at the vertex x ( j , )  and k contacts 
of which at least one is a type-I1 contact. Obviously, the resulting tree can only have 
type-I contacts on the branch { x ( j , ) ,  x ( j , + l ) ,  . . . , x ( n ) } .  Next, we examine the walk 
{ x ( j , ) ,  x ( j ,  + l) ,  . . . , x( n ) }  and repeat the same procedure along it. Since W can have 
at most k type-I contacts, by repeating the procedure at most k times, we convert W 
into an ( n  + 1)-vertex tree with k branch points of degree 3 and exactly k type-I1 
contacts (figure 1). 

Let T he a tree Constructed following the above procedure with only one branch 
point U of degree 3. There then exists at least one vertex U' such that it is connected 
to U by the edge [U, U'] and in contact with the end vertex U" of one branch. We add 
the edge [U', U"] and delete the edge [U, U ' ] ,  which gives an n-step self-avoiding walk 
which can be converted into T by the above procedure. Since U has degree 3, it is 
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(.I P I  

Figure 1. ( a )  An 11-step self-avoiding walk with five type-1 nearest-neighbour contacts; 
( b )  a 12-vertex tree constructed from the walk ((I) with two ( < 5 )  branch points and exactly 
five type-ll nearest-neighbour contacts. 

connected to 3 nearest-neighbour vertices. Each of these 3 vertices can be in contact 
with the end vertex of at most 3 branches. Therefore, there are at  most (3 x 3) ways 
of combining together to choose U' and U" and each of them will give a different n-step 
self-avoiding walk. Hence, there can exist at most Y waiks as precursors for T;. i f  T' 
has k branch points, from the above argument, there can exist at most 9' walks as the 
precursors for T'. 

2.4. 

We define Y"(E, 6) = Yn\Yn(e, >), which is the set of n-vertex trees containing at 
most E n  branch points and at most En contacts. We denote by f + ( ~ ,  S) the number 
of trees in .T"(E, s )  with exactly i contacts. By an argument analogous to that of 
Lipson and Whittington (1983). one can show that the limit 

1 m 

lim - T.(E, s, a) = lim - 2 [.,;(E, s )  eia =In &,(E, a) 
"+a3 n "+- n i=, 

1 

exists for all a. 
When E = 0, a member in Yn(O, <) reduces to an (n - 1)-step self-avoiding walk 

without any nearest-neighbour contact. By a standard procedure (Whittington 1988), 
one can show the existence of the limit 

(27) 
1 

In h,,(O, a) = lim -In T.(O, S, a) = K ' .  "-- n 

From lemma 1 and arguments in sw, we obtain theorem 2. 

Theorem 2. For given a, the function of in &,(E. a) is continuous at E = 0. That is 
l imInA, (E ,a )= lnA\ , (O ,a )=~ ' .  (28) 
6-0 

D.. ..":.." " .-.. ..,. A..-^ I.., , l ,I.itt:~"tnn *, " 1  1,00,\ >" lrD,,mP", l"OlO!2",,E tO 
" J  Y " " . ~ L l l r D U , , ~ , " r , ,  " J  ,,.,,,LLL.6L".' ... ,.,, ', .... ".... ...- .- 

that of Gaunt et a /  (1982), one can show that, for any a, 
In h o ( a ) >  K ' .  (29) 

From (28) and (29). we have. 
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Lemma 2. For given a, there exists E ~ ( U )  > 0 such that for any E < E,( a), 

With the lemma 2 and equations (13) and (25), we obtain 

Theorem 3. If lim,,,[In T , ( a ) - n  In Ao(a)]/ln n =  -So(a) exists, then 

in AJc, a ) - n  inA,(a) 
lim =-&(a) "-- In n 

exists for all c and 

e,(a) = eo(a) - c 

3. The presence of an adsorption surface 

In this section, we consider c-animals rooted at an adsorption surface with both the 
nearest-neighbour interaction and the interaction with the surface. The surface can be 
either penetrable or impenetrable. In the following, we do  not distinguish the surfaces. 
However, the appropriate results apply, depending on the surface. 

Let FA be the set of n-vertex trees rooted at the surface. For E > 0, the subsets 
Y;')(E, >) and T ~ ) ( E ,  >) are the same as defined in section 2. By following the same 
procedure there and an argument of Zhao and Lookman (1991), we can convert the 
trees in these subsets into c-animals and establish 

A.+,(c, a , w ) a f i ( a ,  O ) ( E ' n ) ' T ' . ' ' ( E . > ,  % U )  (33) 

A.+dc, a, m ) a f X u ,  w)(E~)'T',Z'(E, >, a, U) (34) 

and 

with E ' =  €/S. 
We define the third subset Y ~ ' ( E ,  >) of Tn, which is the set of all n-vertex trees 

wi!h mc:e thas  n ( n - ! )  vertices ix !he surCace. Fo: a ::e: T E  Fk')<s,>), we choGse 
one vertex of the tree, uo= (0, y )  which is in the surface, and consider all possible 
configurations of the vertex with the vertices U, = ( I ,  y )  and u,=(O, y +  1) (there are a 
total of 9 such configurations). By following a procedure similar to that given in 
theorem 1, we convert the tree into an (n+3)-vertex 1-animal with a 4-cycle in which 
uo is the bottom vertex of the cycle. I t  can be shown that the resulting animal can have 
a finite number of trees as its precursors, and the 4-cycle is not involved in carrying 
out the same transformation at any other vertex which is not in the neighbourhood, 
K(un), of U, given by (16). T can have at most 3 vertices contained in N(uo)  which 
are in the surface. Therefore, provided that e ( n  - 1) > (c - 1) x3, there can be at least 

ways to select the c vertices at which we can carry out the same transformation to 
convert T into a e-animal with (n+3c)  vertices. Similarly, we can establish that 

(36) A,+dc, a , m ) a h ( a ,  O ) ( E ~ ) ' ~ ' . ' ' ( E ,  >, a, 0). 
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Combining it with (33) and (34) yields 

D Zhao and T Lookman 

An+3c(c* a , w ) a f ' ( ~ ,  w ) ( ~ ' n ) ' T n ( ~ ,  >, 0 1 , ~ )  

T"(E, >)=U FYI(€, >) U Y?)(E, >) U Y ( . 3 ) ( E ,  >). 

(37) 

where T.(E, >, a, w )  is the partition function for the trees in the set 

(38) 
Then by following the same procedure in section 2, we can show that, for a 

sufficiently small E and sufficiently large n, 

T . ( ~ , > , a , ~ ) = T . ( a , o ) ( l + o O )  (39) 

An+3c(c> a, w)af'(c, a, w)n'Tn(a, w ) .  (40) 

Combining equations (14) and (40), we obtain theorem 4. 

and therefore 

Theorem 4. If lim.,,[ln T,,(a, w )  - n In &,(a, w)]/ln n = -$(a, w )  exists, then 

[In A.(c, a, w )  - n In &,(a, w ) ]  
lim = -e,(a, w )  
n-m In n 

exists and satisfies 

e,(a, O )  = eo(a, - C. 

4. Discussion 

We have studied two lattice models on the square lattice: c-animals with a nearest- 
neighbour interaction and c-animals with a nearest-neighbour interaction and an 
interaction with an adsorption surface. The result of equation (I)  given in sw has been 
generalized to these two models by establishing the inequalities (11) and (12), which 
are generalizations of the corresponding inequality 

a.+,(c)&An't. (43) 

(equation (1.9) in sw). This inequality was previously obtained by showing that cycles 
can be introduced into a tree at a branch point to give distinct animals with cycles; 
then for some E > 0, the number of trees with more than ~n branch points is equivalent 
to the number of trees as n -00 (see lemmas 4-6 in sw). For the two models we have 
considered, it appears difficult to follow this procedure directly to obtain (11) and 
(12), since we are unable to show that the partition functions for trees with more than 
En branch points are equivalent to the corresponding partition functions for trees. 
These difficulties have been overcome by showing that cyles can also be introduced 
into trees at a vertex with nearest-neighbour contacts and at a vertex in an adsorption 
surface. 

The proof given for the square lattice can be generalized to the d-dimensional 
hypercubic lattice. For instance, we consider c-animals with only nearest-neighbour 
interaction in a d-dimensional hypercubic lattice. A vertex ua= (x, y ,  . . . , z) can then 
have contacts with the vertices U, = (x + 1, y,  . . . , z), u2 = (x, y + 1 , .  . . , z ) ,  . . . , ud = 
(x, y, . . . , z +  1). We first convert ua into a vertex which is connected to two of its 
nearest-neighbour vertices and then into a 4-cycle. The resulting animal can have a 
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finite number of such trees as its precursors. The 4-cycle is totally independent of the 
same transformation carried out at any other vertex which is not in the neighbourhood, 
X (  U,,) defined by 

X(v0): Ix - xol s 1 Iy -yol s 1,. . . ,I2 -2,l s 1.  (44) 

By following the procedure in section 2, we can establish (9) for c-animals in a 
d-dimensional hypercubic lattice. 
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